
In today’s dynamic network environments, keeping an accurate and up-to-date state of all the linux
hosts is crucial.
This document describes the setup and use of Ansible with the flexibility of Python and the
scheduling power of cron jobs.
We setup an automation pipeline which will access your linux hosts via ssh, so that they have the
latest packages and configuration.

This guide will cover:

Setup ansible and python: fetching device configurations and updating linux hosts
Automating with cron jobs: scheduling regular updates to maintain synchronization.
Practical Example: updating a linux host with the newest packages and kernel updates,
rebooting the host after the update.

We use the following file structure for the automation host.
In the example we have a host group called adminhosts which includes for the beginning the
automation hosts itself, let's call it automate.lan.domain.com.

Setup Automation Host with
Ansible

Introduction

File Structure

Login as the netadmin user, this user needs to be the default user on the linux host
automate.lan.domain.com.
sudo -i
https://docs.ansible.com/ansible/latest/installation_guide/installation_distros.html#installin
g-ansible-on-ubuntu

Installation

Install the required tools

sudo apt update

sudo apt install software-properties-common

sudo add-apt-repository --yes --update ppa:ansible/ansible

sudo apt install ansible

Create directory for ansible data

mkdir -p /var/automate/netadmin/ansible-playbooks/maintenance

cd /var/automate/netadmin/ansible-playbooks/maintenance

mkdir inventory roles

Change access rights to /var/automate

https://docs.ansible.com/ansible/latest/installation_guide/installation_distros.html#installing-ansible-on-ubuntu
https://docs.ansible.com/ansible/latest/installation_guide/installation_distros.html#installing-ansible-on-ubuntu

This will add the <newusername>, creates a new Homedirectory in /home/<newusername> and
add the User to the Primary Group netadmin.

The following will create the default path structure for a role. Roles can also be used from the
ansible-galaxy found here:

https://galaxy.ansible.com

This hosts file lists all the hosts we want to manage with ansible. The hosts are grouped, at the
moment we only have the adminservers group with the host automate.lan.domain.com. This will be
extended in the future.

chgrp -R netadmin /var/automate

chmod -R 774 /var/automate

ls -l /var/automate

 drwxrwxr-- 4 root netadmin 4096 Mar 13 07:56 automate

How to add a User to the System

sudo useradd -m -s $(which bash) -g netadmin <newusername>

Configuration

Ansible Roles

Create the ansible role system_update

cd /var/automate/netadmin/ansible-playbooks/maintenance/roles

ansible-galaxy role init system_update

Create hosts file in inventory folder

vi /var/automate/netadmin/ansible-playbooks/maintenance/inventory/production

[adminservers]

automate.lan.domain.com

[webservers]

web1.dmz.domain.com

web2.dmz.domain.com

[dbservers]

https://galaxy.ansible.com

This is the master yaml file for running the ansible-playbook.

This will be the yaml config file which does describe which roles should be used. At the moment we
only use "system_update" and the "qemu-guest-agent" role.

The "system_update" role will be used to update packages on the selected hosts.
The "qemu-guest-agent" role is used to install/rollout the qemu guest agent on virtual machines.

db1.lan.domain.com

db2.lan.domain.com

Create the main.yml file for our "maintenance" ansible-playbook

vi /var/automate/netadmin/ansible-playbooks/maintenance/main.yml

file: main.yml

- hosts: all

 gather_facts: yes

- hosts: adminservers:!automate.lan.gecloud.ch

 roles:

 - system_update

 - qemu-guest-agent

- hosts: webservers

 roles:

 - system_update

 - qemu-guest-agent

- hosts: appservers

 roles:

 - system_update

 - qemu-guest-agent

- hosts: dbservers

 roles:

 - system_update

 - qemu-guest-agent

What is the "system_update" role doing ?

The goal is to update packages in the following order:

Update all packages to their latest version
Check if a reboot is required
Reboot if required

Create main.yml file:

Create debian.yml:

vi /var/automate/netadmin/ansible-playbooks/maintenance/roles/common/tasks/main.yml

- include_tasks: debian.yml

 when: ansible_os_family == "Debian"

vi /var/automate/netadmin/ansible-playbooks/maintenance/roles/common/tasks/debian.yml

- name: Update all packages to their latest version

 ansible.builtin.apt:

 update_cache: true

 autoremove: true

 cache_valid_time: 3600

 name: "*"

 state: latest

- name: Check if a reboot is required

 stat:

 path: /var/run/reboot-required

 register: reboot_required_file

- name: Reboot if required

 reboot:

 msg: "Reboot initiated by Ansible due to kernel updates"

 connect_timeout: 5

 reboot_timeout: 300

 pre_reboot_delay: 0

 post_reboot_delay: 30

 test_command: uptime

 when: reboot_required_file.stat.exists == true

Create the ansible.cfg (See comments for parameter description):

When this playbook is now running, it follows the flow:

Gathering facts about the hosts in the group "adminservers". This will return many
information about the host like the host family "debian" or "redhat" etc.
Update all packages to their latest version
Check if a reboot is required
Reboot if required

sudo vi /etc/ansible/ansible.cfg

[defaults]

Ansible enables host key checking by default.

Checking host keys guards against server spoofing and man-in-the-middle attacks, but it does

require some maintenance.

If this is set to False the host key will be automatically accepted and added.

Also note that this could be a security problem accepting host keys.

host_key_checking = False

Python will output warning in the log when a ansible-playbook is running.

The following will silent these warnings to not overfill the output with these python

warnings.

interpreter_python = auto_silent

profile how long each task takes

callacks_enabled = profile_tasks

parallel processing

forks = 10

Logging

log_path = /var/log/ansible_playbook.log

[privilege_escalation]

Use sudo on the destination host to run as root the tasks.

become = True

Cronjobs

Add the cron job

At the moment we only use the user and group netadmin. It will be possible to use more users
which are members of the netadmin group and they have their personal ansible playbooks at the
path /var/automate/<username>/ansible-playbooks.

Each user can then edit his cron job with the command

An example for a cron job. This will start every day at 02:00 in the morning.

The following will allow to edit other Users crontab. It is allowed for the Group netadmin:

Command Action

crontab -l Lists the crontab entries of the current user

crontab -e Edit the crontab entry of the current user

crontab -r Delete the crontab of the current user (Use with care!)

crontab -e

Create a script for running the cron job as a User

$ vi /var/automate/<username>/ansible-playbooks/run-cron.sh

PATH="$PATH:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin"

. $HOME/.keychain/`/usr/bin/hostname`-sh

/usr/bin/ansible-playbook -i /var/automate/<username>/ansible-

playbooks/maintenance/inventory/production /var/automate/<username>/ansible-

playbooks/maintenance/main.yml

PATH="$PATH:/usr/bin"

0 2 * * * /var/automate/petbau/ansible-playbooks/run-cron.sh

Allow to edit crontabs from other Users

$ vi /etc/sudoers.d/cronedit

%netadmin ALL = (ALL) NOPASSWD: /usr/bin/crontab

Crontab Commands

Command Action

crontab -lu <username> List the crontab of other users. It does only work if you are
member of the netadmin group.

crontab -eu <username> Edit the crontab of other users. It does only work if you are
member of the netadmin group.

A Python Script running in a venv does need a Shell Script to activate the venv and run the script.
The Script will run in the /var/automate/<username> path of each user.

The following is an example for an Automation Python Script with venv, we will create start.sh:

Make the Script Executable:

Create the Crontab Entry:

Storing SSH credentials securely for Ansible playbooks that are triggered via cron involves a
balance between usability and security.

Here's a practical approach...

Use ssh-agent with keychain.

Python Scripts with Virtual Environment (venv)

Create the Shell Script

$ vi /var/automate/<username>/python-automation/start.sh

cd /var/automate/<username>/python-automation

source .venv/bin/activate

python python-automation.py

chmod +x start.sh

$ crontab -e

m h dom mon dow command

0 5 * * * /var/automate/<username>/python-automation/start.sh > ~/python-automation.log 1>&1

SSH Private Keys and Passwords

Best Practice for Storing SSH Keys for Cron-Triggered Ansible Jobs

Install it:

Add to users .bashrc:

Now also crontabs are using the SSH-Agent provided by the keychain Utility, great!

If needed set a timeout how long the password should be used for the provided SSH Key.
The Value is in minutes, in the example below, the password will be cached for 3 Months.

By following these steps, you'll have a system where ansible periodically fetches the current
information from the hosts.
The cron job ensures that this process will be run every day at 02:00 in the morning.

If you add all linux hosts to your ansible hosts file (inventory/production), all devices will be
included into this process.

sudo apt install keychain

$ vi $HOME/.bashrc

eval $(keychain -quiet --eval ~/.ssh/id_rsa)

keychain --timeout 131487

Summary

Revision #15
Created 21 March 2025 14:30:03 by Peter Baumann
Updated 24 April 2025 16:09:50 by Peter Baumann

